Tag: OpenHAB2

Creating An OpenHAB 2.3.0 Snapshot Docker Container

We found quick instructions for creating a Docker container for the OpenHAB 2.3.0 snapshot. These instructions evidently presuppose some basic knowledge of building Docker containers, so I thought I’d write the “I don’t know what I am doing” version of the instructions. Beyond the obvious download & install Docker, then make sure it’s functional (service starts).

The linked Dockerfile is not the only thing you need. Go up a level — you need both the Dockerfile and entrypoint.sh files. Create a directory somewhere and grab these two files. Then build the container using

docker build -t oh2imagename .

I used a short, alpha-numeric only name for my image. When I used slashes as in the example, the container would not start. Then make the folders you want to map into OpenHAB2:

mkdir /some/path/to/openhab/addons
mkdir /some/path/to/openhab/conf
mkdir /some/path/to/openhab/userdata

The instructions conflate local users/groups with in-container users/groups. You do not need to create a local user. You do need to indicate the uidNumber and gidNumber for the openhab user and group. Even if you do create the local user and group, then change the /some/path/to/openhab permissions to provide full access to the user … you may well not be able to access the files. That is SELinux, not a file permission issue. The quick/dirty solution is to start the container with the privileged flag:

--privileged=true

Alternately, consult the Universal Archive of All IT Knowledge and figure out how to allow the docker service to write files where you want them. And how to access USB devices if you are trying to use something like a ZWave dongle. We went with the privileged route 🙂 The –name option is just the container name. The –net uses the host network for container communications instead of the bridge network. Saves mapping ports, although you could easily use the bridge network and map out the handful of OpenHab specific ports. The -d runs the container in detached mode. The -e sets some environment flags (used by the user/group creation script that runs upon container startup). The –tty (or -t) attaches a console. Not really used here.

docker run --privileged --name oh2containername --net=host --tty -d -e USER_ID=5555 \
 -e GROUP_ID=5555 oh2imagename

Ideally, your OpenHAB2 instance will be running. Use “docker ps” to list out the running containers. If you don’t see a container with the name supplied above … then something went wrong. You can use “docker history oh2containername” to view a quick history, but “docker logs oh2containername” will probably provide more useful information. We encountered file permission issues (as noted above, due to SELinux) which prevented the initial container setup from running. Once that was sorted, the container showed up in the running container list.

You’re ready to use it — you can access the web console using your computer’s IP address (assuming you set this container up in the host network and not the bridge — if you used the bridge, you can use “docker inspect oh2containername” and look for IPAddress under NetworkSettings) on the default port. You can ssh into the Karaf console with the default user/password on the default port. Or you can shell into the container.

docker exec -it oh2containername /bin/bash

This is a bash shell running on the OH2 container — you’ll find a lot of ‘stuff’ hasn’t been installed, and your normal command aliases won’t be present. But it’s a shell on the server and can be used to start/stop OH2.

Logging OpenHAB’s Karaf Console To A File

With OpenHAB2, there is a console where information is displayed. You can copy/paste from the console to save information, but if you are reproducing an issue and expect something to be logged, you can also dump the information from the console into a text file. This is done by ssh’ing into the Karaf console and using tee to write output to a file. Since the SSH server is bound to 127.0.0.1, you will need to use localhost or 127.0.0.1. This cannot be done remotely without some sort of firewall port redirection or OpenHAB change

     ssh UserName@localhost -p 8101 | tee -a /tmp/test.txt

So what’s the username? Karaf uses karaf as the username and password. OpenHAB uses the users.properties file (./openhab2/userdata/etc) to store users. Our file has the user openhab. You can google the default password or put your own crypt string in there and know the password.

Now everything that comes across the Karaf console (system output and stuff you type) will be in the /tmp/test.txt file.

[root@fedora01 ~]# tail -f /tmp/test.txt

                          __  _____    ____
  ____  ____  ___  ____  / / / /   |  / __ )
 / __ \/ __ \/ _ \/ __ \/ /_/ / /| | / __  |
/ /_/ / /_/ /  __/ / / / __  / ___ |/ /_/ /
\____/ .___/\___/_/ /_/_/ /_/_/  |_/_____/
    /_/                        2.2.0-SNAPSHOT
                               Build #1114

Hit '' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit '' or type 'system:shutdown' or 'logout' to shutdown openHAB.

openhab> bundle:list
START LEVEL 100 , List Threshold: 50
 ID │ State    │ Lvl │ Version                │ Name
────┼──────────┼─────┼────────────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────
 15 │ Active   │  80 │ 2.2.0.201712061711     │ ZWave Binding
 16 │ Active   │  80 │ 2.2.0.201712052342     │ ZigBee Binding
 17 │ Active   │  80 │ 5.3.1.201602281253     │ OSGi JAX-RS Connector
 18 │ Active   │  80 │ 2.4.5                  │ Jackson-annotations
 19 │ Active   │  80 │ 2.4.5                  │ Jackson-core
 20 │ Active   │  80 │ 2.4.5                  │ jackson-databind
 21 │ Active   │  80 │ 2.4.5                  │ Jackson-dataformat-XML
 22 │ Active   │  80 │ 2.4.5                  │ Jackson-dataformat-YAML
 23 │ Active   │  80 │ 2.4.5                  │ Jackson-module-JAXB-annotations
 24 │ Active   │  80 │ 2.7.0                  │ Gson
 25 │ Active   │  80 │ 18.0.0                 │ Guava: Google Core Libraries for Java
 26 │ Active   │  80 │ 3.0.0.v201312141243    │ Google Guice (No AOP)
 27 │ Active   │  80 │ 3.12.0.OH              │ nrjavaserial
 28 │ Active   │  80 │ 1.5.8                  │ swagger-annotations
 29 │ Active   │  80 │ 3.19.0.GA              │ Javassist
 31 │ Active   │  80 │ 3.5.2                  │ JmDNS
 34 │ Active   │  80 │ 1.1.0.Final            │ Bean Validation API
 36 │ Active   │  80 │ 2.0.1                  │ javax.ws.rs-api

Exchange 2013 Calendar Events In OpenHAB (CalDAV)

We’ve wanted to get our Exchange calendar events into OpenHAB — instead of trying to create a rule to determine preschool is in session, the repeating calendar event will dictate if it is a break or school day. Move the gymnastics session to a new day, and the audio reminder moves itself. Problem is, Microsoft stopped supporting CalDAV.

Scott found DAVMail — essentially a proxy that can translate between CalDAV clients and the EWS WSDL. Installation was straight-forward (click ‘next’ a few times). Configuration — for Exchange 2013, you need to select the “EWS” Exchange protocol and use your server’s EWS WSDL URL. https://yourhost.domain.cTLD/ews/exchange.asmx … then enable a local CalDAV port.

On the ‘network’ tab, check the box to allow remote connections. You *can* put the thumbprint of the IIS web site server certificate for your Exchange server into the “server certificate hash” field or you can leave it blank. On the first connection through DAVMail, there will be a pop-up asking you to verify and accept the certificate.

On the ‘encryption’ tab, you can configure a private keystore to allow the client to communicate over SSL. I used a PKCS12 store (Windows type), but a java keystore should work too (you may need to add the key signing key {a.k.a. CA public key} to the ca truststore for your java instance).

On the advanced tab, I did not enable Kerberos because the OpenHAB CalDAV binding passes credentials. I did enable KeepAlive – not sure if it is used, the CalDAV binding seems to poll. Save changes and open up the DAVMail log viewer to verify traffic is coming through.

Then comes Scott’s part — enable the bindings in OpenHAB (there are two of them – a CalDAVIO and CalDAVCmd). In the caldavio.cfg, the config lines need to be prefixed with ‘caldavio’ even though that’s not how it works in OpenHAB2.

caldavio:CalendarIdentifier:url=https://yourhost.yourdomain.gTLD:1080/users/mailbox@yourdomain.gTLD/calendar
caldavio:CalendarIdentifier:username=mailbox@yourdomain.gTLD
caldavio:CalendarIdentifier:password=PasswordForThatMailbox
caldavio:CalendarIdentifier:reloadInterval=5
caldavio:CalendarIdentifier:disableCertificateVerification=true

Then in the caldavCommand.cfg file, you just need to tell it to load that calendar identifier:

caldavCommand:readCalendars=CalendarIdentifier

We have needed stop openhab, delete the config file from ./config/org/openhab/ related to this calendar and binding before config changes are ingested.

Last step is making a calendar item that can do stuff. In the big text box that’s where a message body is located (no idea what that’s called on a calendar entry):

BEGIN:Item_Name:STATE
END:Item_Name:STATE

The subject can be whatever you want. The start time and end time are the times for the begin and end events. Voila!